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The p rob lem of heat  t r a n s m i s s i o n  by conduction and radia t ion through a semi inf in i te  optically 
dense medium is analyzed,  with incident external  radia t ion and with convect ive heat t r a n s f e r  
taken into account.  An express ion  for  the radiant  t h e r m a l  flux is der ived  f rom the solution 
to the equation of radia t ion flux propagat ion by the method of a s soc ia t ive  asympto t ic  expan-  
s ions.  The effect of the t e m p e r a t u r e  gradient  at the su r face  on the emiss iv i ty  of the body is 
es tabl i shed for  the medium range  of absorpt iv i ty  va lues .  

In an analys is  of the rad ia t ive- -conduc t ive  heat  t r a n s m i s s i o n  through optical ly dense media ,  the Ros -  
seland approximat ion  usual ly  s e r v e s  as the express ion  for  the radiant  component  of the t h e r m a l  flux. This 
approximat ion  has been der ived  f r o m  a p a r a m e t r i c  expansion of the solution to the equation of radiat ion 
propagat ion  [1]. 

An expansion in t e r m s  of the p a r a m e t e r  r esu l t s  in the el iminat ion of the a r b i t r a r y  constant  f rom the 
solution to the equation of rad ia t ive  heat  t r a n s m i s s i o n  and r ende r s  it unsui table  for  the inhomogeneous r e -  
gion adjoining the boundary,  where  a boundary condition mus t  be sa t i s f ied .  Obviously, such an expansion 
cannot be cons idered  equally useful  over  the en t i re  range  of the p rob l em.  

The exis tence  of an inhomogeneous region is ,  as a rule ,  re la ted  to the expansion of the solution in 
t e r m s  of the p a r a m e t e r  by which the f i r s t  de r iva t ive  is  mul t ip l ied [2], and in the equation of radia t ion p rop -  
agation through optical ly dense med ia  such an expansion p a r a m e t e r  is e = 1 / k .  

To a r r i v e  at a un ive r sa l ly  useful  p a r a m e t r i c  expansion in this s i tuat ion is the object  in the p rob lem 
of pa r t i cu l a r  (singular) pe r tu rba t ions .  A un ive r sa l  solution is  mos t  often obtained by cons t ruc t ing  an ap-  
p rox imat ion  which is un i formly  c lose  within the inhomogeneous region and then assoc ia t ing  it with a 
s t ra igh t  p a r a m e t r i c  expansionby the method of a s soc ia t ive  asympto t ic  expansions.  

Severa l  in te res t ing  facts  about rad ia t ive- -conduct ive  heat  t r a n s m i s s i o n  through optical ly dense media  
can be  revea led ,  i f  the method of a s soc i a t i ve  expansions is  applied to the solution of such p r o b l e m s .  

We will cons ider  the following p rob lem:  

It is  de s i r ed  to de t e rmine  the s t e a d y - s t a t e  t e m p e r a t u r e  field and the t h e r m a l  fluxes in a semiinf ini te  
solid body on whose su r f ace  impinges  external  radia t ion un i formly  f rom all d i rec t ions .  Through the s a m e  
su r f ace  heat  is t r a n s f e r r e d  f rom that  body to the ambient  medium by convection.  

The p rob lem is  solved under  the following assumpt ions :  1) the boundary between the solid body and 
the adjoining med ium is  t r a n s p a r e n t  to the external  radia t ion and is  a lso  diffusive,  2) the absorp t iv i ty  of 
the solid m a t e r i a l  does not va ry  with the radia t ion frequency,  3) the hypothesis  of local dynamic equi l ibr ium 
appl ies  to the radiat ion,  4) the phys ica l  p a r a m e t e r s  of the m a t e r i a l  a re  not t empera tu re -dependen t ,  5) 
the t e m p e r a t u r e  field is  un i form,  and 6) the r e f r a c t i v e  indices of the solid ma t e r i a l  and the adjoining m e -  
dium a re  both equal to unity.  

We ~rill r e s o l ve  the radia t ion intensi ty in the solid into two components  in opposi te  di rect ions:  I + 
and I -  (see Fig. 1). 
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Schematic  d i ag ram of 
the p rob l em.  

Both intensi ty fields a r e  desc r ibed  by the equation 

dI 
em - -  ~ B (x) - - I .  (1) 

dx 

In o rde r  to find the I T intensi ty  dis t r ibut ion in the solid,  we 
l e t I  = I  + a n d m  > 0 i n  Eq. (1). 

The conditions of radia t ion at the boundary will be s ta ted  as 

I+~=I + (0) when x=0.  (2) 

The quantity I+(0) will be  de te rmined  l a t e r .  

The outer  expansion of the solution will be exp re s sed  in t e r m s  
of the following asympto t ic  sequence 

i+= l+o +el++ ~2I+ +. . .  (3) , 

The unknown functions a r e  de te rmined  by inser t ing  this  expansion into Eq. (1) and subsequently 
equating the r e spec t i ve  equal -power  t e r m s  in e. As a resu l t ,  we obtain 

I+----B ( x ) -  emB' (x) + 0 (e~). (4) 

The p r i m e  sign denotes a de r iva t ive  with r e spec t  to x. 

Express ion  (4) is  not a un i form approximat ion to the solution to Eq. (1), because  it does not match  
the boundary condition (2). This expansion is ,  t he re fo re ,  unsui table  for  the inhomogeneous region adjoin- 
ing the boundary.  

We will now examine  the solution in the inhomogeneous region.  For  this  pu rpose  we int roduce a 
new var iab le  and a new function defined by the equali t ies:  

X -  x ; i +(x, e) ----- J+ (e, X). 
8 

With the aid of these  expres s ions  we t r a n s f o r m  the or iginal  equation (1): 

dd + 
m - -  ---- B (eX) - -  J+ (4') 

dX 

and the boundary condition (2). The l a t t e r  is  now wri t ten as 

J+=:l+ (0) when X=0.  (5) 

The t r an s fo rm a t i ons  have resu l ted  in the el iminat ion of the smal l  p a r a m e t e r  by which the f i r s t  d e r i -  
vat ive  is  mult ipl ied.  An expansion of the solution to Eq. (4) in t e r m s  of e will make  it poss ib le  to re ta in  
s e v e r a l  essent ia l  p rope r t i e s  of the solution which a r e  lost  in the outer  expansion (3). 

We will now r e p r e s e n t  the inner  expansion by such an asympto t ic  sequence 

j+ =g~ + ~j+ ~_~2~ +. . .  (6) 

The unknown functions in expansion (6) a r e  de te rmined  by inse r t ing  (6) into (4) and (5). It mus t  be 
cons idered  h e r e  that  

B (x) = B (eX) = B (0) + eB' (0) X + . . .  (7) 

It is easy  to  see  that  the unknown functions in expansion (6) a r e  the so lu t ionto  f i r s t - o r d e r  different ia l  
equations with boundary conditions defined according  to (5). 

The binomial  inner expansion is 

J+:=~B (0)~[1+ (0)-- B (0)] exp ( - X - )  

-!- emB' (o) [ X -- l + exp (- -  X ) ] + O (e2). (8) 

This expansion desc r ibe s  the solution to Eq. (1) where  expansion (3) is  u s e l e s s .  

1128 



r(x) 
kX =l#O 

,oo! 

00! 2 Rx 
Fig. 2. Te mpe ra tu r e  field in a 
semiinfini te  body with (r = 5.67 �9 10 -8 
W/m 2- (OK)4,~ = I0 W/m 2.~ R 

= 0.5, I n = 1300 W/m 2, T O = 300~ 

The radiant  flux in the solid is 

By combining expansions (3) and (6), one can construct  a 
uniformly approximate solution to Eq. (1) everywhere  within the 
r a n g e  of the problem.  The sought composi te  expansion obtained 
by the method of addition [2] is 

l~ = B  (x) & [I+ (O) --  B (O)] exp ( - -  ~m ) 

[ ( x)] 
-- em B' (x) --  B' (0) exp - -  -~m + 0 (~2). (9) 

A uniform approximation for I- is const ructed in an analog- 
ous manner .  The inhomogeneous region of intensity I- l ies at 
infinity and, the re fo re ,  the outer  expansion alone will suffice for  
I- ,  namely 

I- = B ( x ) -  emB' (x) + 0 (~). (10). 

1 - -1  

qr = 2a j'. ml+dm-- 2~ ~ ml-dm. 
* /  

o 0 

(il) 

With the aid of (8) and (10), this express ion  can be expanded as follows 

qr .... 2n [P (0) --  B (0)] E a (kx) - -  4~ B' (x) + 2~ B' 3~- - 7  (O) E, (kx). (12) 

Here  E3(kx) and E4(kx) a re  exponential in tegrals  whose p roper t i e s  and values a re  given in [3]. 

We note that the use of the outer  expansions (3) and (10) in (11) yields ,  af ter  integrat ion,  the well 
known Rosseland approximation for  the radiat ion flux through optically dense media: 

4u 
qr . . . . . .  B' (x). 

3k (13) 

The re la t ion der ived he r e  will be inoperat ive  where  the outer  expansions (3) and (10) a re  unsuitable, 
i . e . ,  within the region adjoining the boundary. Express ion (12) yields an es t imate  of the e r r o r  incur red  
by the often used Rosseland approximation.  

Through media  with a high absorpt ivi ty  (metals,  for  example),  the re fore ,  the radiat ive  t r ansmiss ion  
of heat  is appreciable  only within smal l  regions nea r  the boundary. According to express ion  (13), on the 
other  hand, radia t ive  heat t r ansmis s ion  occurs  a lmost  nowhere.  

The magnitude of I+(0) in (12) i s  found f rom the balance of radiant  energy at the solid surface:  

a/+ (0) = n (1 --  R) I~ + Rq- (0) (14) 

Expanding the respective terms here yields 

2~ n l  § (0) --  ~ (I  - -  R) It, -~- ~RB (0) + - ~  RB' (0). (15) 

With the aid of this equality, we obtain f rom (12) an e x p r e s s i o n  for  the radiat ion flux at the solid 
sur face :  

qr (0) --= a (l - -  R) [ I ' ~ - B ( 0 ) -  23k B ' ( 0 ) ] .  (16) 

From here it is easy to determine the intrinsic radiation from the body into the adjoining space, if 
one assumes that I n = 0. In media with a high absorptivity the intrinsic radiation is proportional to the 
transparency of the boundary between the body and the adjoining medium, defined by 1--R, and to the 
Planck function. At moderate values of k, an appreciable effect on the intrinsic radiation has the temper- 
ature field gradient at the boundary. 

The Fourier hypothesis and expression (12) for the radiation flux has yielded an equation for one-di- 
mensional radiative heat transmission and conduction 
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Then 

ZT" + 4n3k B" (x) = - -  2~k {(1 - -  R) [Is - -  B (0)] 

i 2 B' (0)} E~ (kx) - -  2~B' (0) E~ (kx). 

Usual ly  equat ions  d e s c r i b i n g  such  p r o c e s s e s  do not contain  exponential  i n t eg ra l s .  

The total  t h e r m a l  flux at a c ons i de r a b l e  d i s tance  f r o m  the boundary  s u r f a c e  we set  equal to  z e r o .  

(17) 

T'-+0 a s  x-+co. (18) 

The m o l e c u l a r  hea t  t r a n s f e r  th rough  the boundary  is  gove rned  by the  fol lowing boundary  condit ion of  
the th i rd  kind 

~T' = a (T - -  To) when x = 0. 

The solut ion to Eq. (17) with the  boundary  condi t ions  (18) and (19) is 

ZT (x) + 4 a  T* 2 (1 - -  R) [~I~ - -  o'T' (0)] E, (kx) -4- C, 
3k (x) -- k 

Z (l - -  R) [nI~ - -  ~T* (0)] 
C ~  -T-  �9 

R" 8(y T 3 (0) 1 + 0 - -  ) --~-~ 

+ 2 ~ ( 1 - - R ) I , ~ +  2 a ( I + R ) T ' ( 0 )  k_~,ro" 
3k 3k 

wh~re  

(19) 

(20) 

The t e m p e r a t u r e  g rad ien t  is 

T' (x) 

( 6/e / 6 ~  

+ 16tr T3 ~ (x) 
(21) 

where  

r' (0) . . . . .  0_--~)__[~(-_ -- or' (0)] 
R" 8o' T3 Z +  ( 1 - - ) - ~ -  (0) 

The a c c u r a c y  of these  e x p r e s s i o n s  is of  the  o r d e r  O(1/kk2) .  

The unknox~aa s u r f a c e  t e m p e r a t u r e  T(0) is found as the  solut ion to the  a lgeb ra i c  equation 

1 + ...8_~__ / aT 4 (0) - -  8 ~  aToT 3 (0) 
3k~ ! 3kz, 

1--Ra [- ~ a  zl~] = 0. (22) -~- T (0) - -  [_ Z o -~- 

In Fig.  2 a r e  shown t e m p e r a t u r e  f ields in a sol id  m e d i u m  ca lcu la ted  on a c o m p u t e r  fo r  the  fol lowing 
va lues  of the  govern ing  p a r a m e t e r s :  

= 5.67.10 -s w/m L-K; a :.: 10 w/m 2-~ ' R == 0.5; 

I~ = 1300 W/m2; T O =: 300 ~ 

A d e c r e a s e  in the  p roduc t  kk r e s u l t s  in a l ower  s u r f a c e  t e m p e r a t u r e  of  the  body, which in t u rn  r e -  
duces  the  convec t ive  t h e r m a l  flux t r a n s f e r r e d  to the adjoining med ium.  The  rad ia t ive  component  of  the  
t h e r m a l  flux at the  body s u r f a c e ,  which has  been s t ipula ted  in the  p r o b l e m  to  be equal to the convec t ive  
component ,  behaves  ana logous ly .  
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Express ion  (16) indicates that a dec r ea se  in the radiat ion flux is re la ted  to an inc rease  in B'(0), 
which is propor t ional  to the t empe ra tu r e  gradient  at the boundary and, the re fo re ,  the other  component B(0) 
dec rea se s  with decreas ing  sur face  t empera tu re .  This is conf i rmed in Fig. 2. 

We note,  in conclusion, that,  for  analyzing the emiss iv i ty  of bodies,  the i r  boundary with the su r roun-  
ding medium must  be cha rac te r i zed  only in t e r m s  of its ref lec t iv i ty  and t ransmi t t iv i ty  with respec t  to 
radiat ion.  Radiation is genera ted  in the body within the boundary l ayer ,  where the radiati  on intensity is 
de te rmined  according to express ions  (8) and (9). 

In optically ve ry  dense media,  where  heat  is  t r ansmi t t ed  onJy by conduction, the radiat ive  component 
of the the rmal  flux is appreciable  within the boundary l aye r .  The heat t r ansmiss ion  cha rac te r i s t i c s  he r e  
a r e  s t rongly affected by the boundary conditions with respec t  to radiat ion and the molecu la r  flux. 

T(x) 
To 
In 
I +, l -  
m = cos e; 
B(x) = (~ /~) r '  
k 
k 
O~ 

R 
(Y 

NOTATION 

is the t empera tu re ;  
is the t empe ra tu r e  of adjoining medium; 
is the intensi ty of external  radiation; 
a re  the radiat ion intensi t ies  along the posi t ive and the negative x-axis ;  

is the emiss iv i ty  of black body; 
is  the radiat ion absorptivi ty;  
is the thermal  conductivity; 
is the heat t r a n s f e r  coefficient;  
is the sur face  ref lect ivi ty;  
is the Stefan--Boltzmann constant.  

1o 

2. 
3. 
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