RADIATIVE—CONDUCTIVE TRANSMISSION OF HEAT
THROUGH OPTICALLY DENSE MEDIA

Yu. P. Konakov UDC 536.3

The problem of heat transmission by conduction and radiation through a semiinfinite optically
dense medium is analyzed, with incident external radiation and with convective heat transfer
taken into account. An expression for the radiant thermal flux is derived from the solution
to the equation of radiation flux propagation by the method of associative asymptotic expan-
sions, The effect of the temperature gradient at the surface on the emissivity of the body is
established for the medium range of absorptivity values.

In an analysis of the radiative—conductive heat transmission through optically dense media, the Ros-
seland approximation usually serves as the expression for the radiant component of the thermal flux, This
approximation has been derived from a parametric expansion of the solution to the equation of radiation
propagation [1].

An expansion in terms of the parameter results in the elimination of the arbitrary constant from the
solution to the equation of radiative heat transmission and renders it unsuitable for the inhomogencous re-
gion adjoining the boundary, where a boundary condition must be satisfied. Obviously, such an expansion
cannot be considered equally useful over the entire range of the problem.

The existence of an inhomogeneous region is, as a rule, related to the expansion of the solution in
terms of the parameter by which the first derivative is multiplied [2], and in the equation of radiation prop-
agation through optically dense media such an expansion parameter is ¢ = 1/k,

To arrive at a universally useful parametric expansion in this situation is the object in the problem
of particular (singular) perturbations. A universal solution is most often obtained by constructing an ap-
proximation which is uniformly close within the inhomogeneous region and then associating it with a
- straight parametric expansionby the mecthod of associative asymptotic expansions,

~ Several interesting facts about radiative—conductive heat transmission through optically dense media
can be revealed, if the method of associative expansions is applied to the solution of such problems.,

We will consider the following problem:

It is desired to determine the steady-state temperature field and the thermal fluxes in a semiinfinite
solid body on whose surface impinges external radiation uniformly from all directions. Through the same
surface heat is transferred from that body to the ambient medium by convection,

The problem is solved under the following assumptions: 1) the boundary between the solid body and
the adjoining medium is transparent to the external radiation and is also diffusive, 2) the absorptivity of
the solid material-does not vary with the radiation frequency, 3) the hypothesis of local dynamic equilibrium
applies to the radiation, 4) the physical parameters of the material are not temperature-dependent, 5)
the temperature field is uniform, and 6) the refractive indices of the solid material and the adjoining me-
dium are both equal to unity.

We will resolve the radiation intensity in the solid into two components in opposite directions: It
and I" (see Fig. 1).
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Qv Both intensity fields are described by the equation
b xf " - ' dl
@ N . 5 em — = B(x) —I. (1)
0 In order to find the I intensity distribution in the solid, we
7 o) let I =1I*and m = 0 in Eq. (1).
' X
(©) ‘ The conditions of radiation at the boundary will be stated as
4 I==1" (0) when x=0. (2)

Fig. 1. Schematic diagram of

the problem. The quantity 17(0) will be determined later.

The outer expansion of the solution will be expressed in terms
of the following asymptotic sequence

b [ el el 4 &)
The unknown functions are determined by inserting this expansion into Eq (1) and subsequently
equating the respective equal-power terms in €. As a result, we obtain
=B (x) —emB’ (x) + O (c?). 4)
The prime sign denotes a derivative with respect to x.

Expression (4) is not a uniform approximation to the solution to Eq. (1), because it does not match
the boundary condition (2). This expansion is, therefore, unsuitable for the inhomogeneous region adjoin~
ing the boundary. '

We will now examine the solution in the inhomogeneous region. For this purpose we introduce a
new variable and a new function defined by the equalities:

= X P 8= d (e X).
]

With the aid of these expressions we transform the original equation (1):

B @)

m

and the boundary condition (2). The latter is now written as
J*=I* (0) when X==0. (5

The transformations have resulted in the elimination of the small parameter by which the first deri-
vative is multiplied. An expansion of the solution to Eq. (4) in terms of € will make it possible to retain
several essential properties of the solution which are lost in the outer expansion (3).

We will now represent the inner expansion by such an asymptotic sequence
t=df + e et e (6)

The unknown functions in expansion (6) are determined by inserting (6) into (4) and (5). It must be
considered here that

B(x) = B(eX) = B(0) + eB’ (0) X~ -+ (7

It is easy to see that the unknown functions in expansion (6) are the solutionto first-order differential
equations with boundary conditions defined according to (5).

The binomial inner expansion is

J*B(©) 4 I © — B (O] exp (— —’;—)
o 0 X 1o (< )]0 o

This expansion describes the solution to Eg. (1) where expansion (3) is useless.
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T{x) By combining expansions (3) and (6), one can construct a
420 /o\\=_foo = uniformly approximate solution to Eq. (1) everywhere within the

— _—1 range of the problem. The sought composite expansion obtained
- /ﬂ(fﬂ by the method of addition [2] is

4

1* =B+ [I O — BO)] exp( ~i—)

380, 7 7 — em
Fig. 2. Temperature field in a s —em [B’ (x) — B’ (0) exp (_ _x_)] + 0 (&) ©)
semiinfinite body with ¢ = 5.67+10 em

W/m?* CK)*, o = 10 W/m?-°C, R

uni imation for I i ; _
- 0.5, Ty = 1300 W /m?, Ty = 300°K. A uniform approximation for I” is constructed in an analog

ous manner. The inhomogeneous region of intensity I lies at
infinity and, therefore, the outer expansion alone will suffice for

I, namely
I" = B(x) —emB’ (x) + O(s%. (10}
The radiant flux in the solid is
1 -1
gy = 2a | mI*dm— 2 5 ml~dm. (11)
0 8

With the aid of (8) and (10), this expression can be expanded as follows
gy - 21 [1*©0)—B (0)] E; (kx) — %Z— B’ (x) 4 %T—E B’ (0) E, (kx). (12)

Here E;(kx) and E,(kx) are exponential integrals whose properties and values are given in [3].
We note that the use of the outer expansions (3) and (10) in (11) yields, after integration, the well
known Rosseland approximation for the radiation flux through optically dense media:
4

gy = — 5 B (0, (13)

The relation derived here will be inoperative where the outer expansions (3) and (10) are unsuitable,
i.e., within the region adjoining the boundary. Expression (12) yields an estimate of the error incurred
by the often used Rosseland approximation,

Through media with a high absorptivity (metals,for example), therefore, the radiative transmission
of heat is appreciable only within small regions near the boundary. According to expression (13), on the
other hand, radiative heat transmission occurs almost nowhere.

The magnitude of I (0) in (12) is found from the balance of radiant energy at the solid surface:
al*(0) = n(l —R) I, + Rg(0). (14)

Expanding the respective terms here yields

al* (0) = (1 — R}, + nRB(0) L i—: RB' (0). | 1)

With the aid of this equality, we obtain from (12) an expression for the radiation flux at the solid
surface:

qr(0>:n(1—R){1n~—B(e>~§2—k—B' (t»} (16)

From here it is easy to determine the intrinsic radiation from the body into the adjoining space, if
one assumes that Iy = 0. In media with a high absorptivity the intrinsic radiation is proportional to the
transparency of the boundary between the body and the adjoining medium, defined by 1 —R, and to the
Planck function. At moderate values of k, an appreciable effect on the intrinsic radiation has the temper-
ature field gradient at the boundary.

The Fourier hypothesis and expression (12) for the radiation flux has yielded an equation for one-di-
mensional radiative heat transmission and conduction
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4
W 2B () = — 20k (L~ R) [, — B (0]

Qk B (0)} E, (k) — 2B’ (0) E, (k). (17)

(
“te
i

<

Usually equations describing such processes do not contain exponential integrals.

The total thermal flux at a considerable distance from the boundary surface we set equal to zero.
Then

T'—>0 as. x—oo. (18)

The molecular heat transfer through the boundary is governed by the following boundary condition of
the third kind '

AT =a(T —T,) when x = 0. (19)
The solution to Eq. (17) with the boundary conditions (18) and (19) is
4 — .
i 0+ 210 = — 2R g o @) B, e+, (20)
where
c_ . (=R [al,—oT*(©)
o 8o
& | I—R T3(0
+( ) i ©)
2n(l—R)I, . 20(1 + R)T*(0)
+ AT,
* 3k 3k 4%
The temperature gradient is
T’ (x)
o f . 80 s 80 v
2(0—R) [l —oT* @)+~ RT*OT (0)}Ea(kx>+ 25 [ OT O (k)
] (21)
. 160 : o
A4 % T3 (x)
where
. — 4
77 (0) = _(—R) [af L_BE;TT—@]—'
O s
A+ (1—R) 3% T3(0)
The accuracy of these expressions is of the order 0(1/ Ak?).
The unknown surface temperature T(0) is found as the solution to the algebraic eguation
/ 8a 8o
|+ o | oT4(0) — T,T2 (0
[ SkA)G O = 5 “HT O
o T oa
e TO) — | —— Tp-al, | =0. 22
TIRTO—| g Tov ] | (22)

In Fig. 2 are shown temperature fields in a solid medium calculated on a computer for the following
values of the governing parameters:

G- 5.67.107% W/m?°K; o =:10 w/m? °C; "R.-0.5

1, = 1300 w/m%, T, = 300 °K.

A decrease in the product Ak results in a lower surface temperature of the body, which in furn re-
duces the convective thermal flux transferred to the adjoining medium. The radiative component of the
thermal flux at the body surface, which has been stipulated in the problem to be equal to the convective
component, behaves analogously.
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Expression (16) indicates that a decrease in the radiation flux is related to an increase in B'(0),
which is proportional to the temperature gradient at the boundary and, therefore, the other component B(0)
decreascs with decreasing surface temperature. This is confirmed in Fig. 2.

We note, in conclusion, that, for analyzing the emissivity of bodies, their boundary with the surroun-
ding medium must be characterized only in terms of its reflectivity and transmittivity with respect to
radiation. Radiation is generated in the body within the boundary layer, where the radiation intensity is
determined according to expressions (8) and (9).

In optically very dense media, where heat is transmitted only by conduction, the radiative component
of the thermal flux is appreciable within the boundary layer. The heat transmission characteristics here
are strongly affected by the boundary conditions with respect to radiation and the molecular flux.

NOTATION
T(x) is the temperature;
Ty is the temperature of adjoining medium;
In is the intensity of external radiation;
It I° are the radiation intensities along the positive and the negative x-axis;
m = cos §;

B = (6/7)T* is the emissivity of black body;

is the radiation absorptivity;

is the thermal conductivity;

is the heat transfer coefficient;

is the surface reflectivity;

is the Stefan—Boltzmann constant.

S R > =
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